	Data plotted correctly/axes labelled with units/appropriate scale/lines of best fit					1+1+1+1
		Powdered calcium carbonate contains smaller particles with greater surface area; More collisions occur per unit of time between reacting particles;				1
	(d)	More carbon dioxide is produced per unit of time resulting in a more rapid decrease in mass when powdered calcium carbonate was used.				1
		Initially, the colour of the solution is purple as the solution is alkaline (pH = 13).				1
49	(a)	The colour changes from purple to red (pH = 2) as more sulfuric acid is produced in the reaction.				1
	(b)	Acts as a catalyst; Increases the rate of formation of sulfuric acid which causes the rapid colour change.				1
50	(a)	Low proportion of collisions are successful. Reactants collide with insufficient (activation) energy or the incorrect orientation for a				1
	(4)	reaction to occur.				1
	(b)	Act as catalysts/increase the rate of chemical reactions.				1
	(c)	$CO_{2 (g)}$ + $H_2O_{(l)}$ \rightleftharpoons $H_2CO_{3(aq)}$ Hydrogencarbonate must be converted into carbon dioxide rapidly inside the blood as				2
	(d)	it flows into the lungs;				1
		There is very little time for carbon dioxide to move from the blood to the lungs to be exhaled (blood is flowing rapidly);				1
		Carbonic anhydrase ensures the rapid conversion of hydrogencarbonate to carbon				1
		dioxide to prevent a build-up of carbon dioxide and subsequent acidosis.				
51	(a)	$K_{c} = \frac{[HI]^{2}}{[H_{2}].[I_{2}]}$				2
	(b)		HI	H ₂	I ₂	-
		Initial concentration (mol.L-1)	1.00/2.00 = 0.500	0	0	
		Change in concentration (mol.L-1)	-0.125	+0.125/2 = +0.0625	+0.125/2= +0.0625	
		Equilibrium concentration(mol.L-1)	0.750/2.00 = 0.375	+0.0625	+0.0625	
		Calculate the initial concentration of HI				1
		Calculate determine the final concentration of HI Calculate determine the change in concentration of HI				1
		Calculate determine the changes in the concentrations of H_2 and I_2 using the				_
		stoichiometric ratio (if HI decreases by 0.25 mol then both H ₂ and I ₂ increase by 0.25				1
		mol/2 as the ratio is 2:1). Determine the equilibrium concentrations of H_2 and I_2				1
	(c)	$K_{\rm c} = \frac{[\rm H_2]. [\rm I_2]}{[\rm HI]^2}$				
		$K_{\rm c} = \frac{[0.0625].[0.0625]}{[0.375]^2}$				1
		$K_{\rm c} = 0.028$				1
	(d)	Left K_c is less than 1.				1
	(e)	$\frac{[HI]^2}{[H_2].[I_2]} = \frac{[0.375]^2}{[0.0625].[0.0625]} = 36$				2
		Alternatively: $\frac{1}{0.028} = 36$				