118	(a)	$p = \gamma m_0 v$	
		$p = \frac{1}{\sqrt{\left(1 - \frac{(0.999999991 \times 3 \times 10^8)^2}{(3 \times 10^8)^2}\right)}} \times 1.673 \times 10^{-27} \times 0.999999991 \times 3 \times 10^8$	1
		$p = 3.74 \times 10^{-15} \text{ kg. m. s}^{-1}$	1
	(b)	$l = l_0 x \sqrt{\left(1 - \frac{v^2}{c^2}\right)}$	
		$l = 8.33 \times 10^{-16} \times \sqrt{\left(1 - \frac{(0.999999991 \times 3 \times 10^8)^2}{(3 \times 10^8)^2}\right)}$	1
		$l = 1.12 \times 10^{-19} \text{ m}$	1
	(c)	Momentum increases with the relativistic speed of the protons;	1
		Eventually, the relativistic momentum approaches infinity when \emph{v} approaches \emph{c} .	1
	(d)	A force cannot accelerate a particle to a speed equal to or higher than c because the	
		particle's momentum becomes infinitely large and the acceleration approaches zero	1
		as the speed approaches c , no matter how large the applied force.	