30	(a)	$a = \frac{\Delta v}{\Delta t}$ $a = \frac{2 - 0}{4 - 2}$ $a = 1 \text{ m s}^{-2}$	1
	(b)	E 12 10 8 8 8 10 Time (s)	2
31	(a)	The dog changes direction at $t = 3$ s. The velocity becomes negative at $t = 3$ s.	1 1
	(b)	$s = \frac{1}{2}\Delta v \Delta t$ $s = \frac{1}{2}120 \times 3$ $s = 180 \text{ mm from the origin}$	1 1
	(a)	8 s	1
32	(b)	2.0 1.5 E) 1.0 0 0 2 4 6 8 10 Time (s)	2
33	(a)	Slowing down The slope of the lines are becoming more shallow with time.	1 1
	(b)	1.0 0.8 E 0.6 20 0.4 0.2 0 2 4 6 8 10 12 14 16 18 Time (s)	3
34	(a)	As the ball moves in the opposite direction to its initial direction/displacement is negative relative to the initial position.	1
	(b)	Both lines represent a ball falling with the same acceleration.	1
	(a)	The velocity curve is changing with time. This indicates that the lion's velocity is constantly changing.	1 1
35	(b) (2)	$a = \frac{\Delta v}{\Delta t}$ $a = \frac{15 - 5}{4 - 0}$ $a = 2.5 \text{ m s}^{-2}$ $a = \frac{\Delta v}{\Delta t}$ $a = \frac{14 - 11}{6 - 2}$ $a = 0.75 \text{ m s}^{-2}$	1 1 1
		$a = 0.75 \mathrm{m s^{-2}}$	1